新生儿高胆红素血症,肠道微生物群,屏障功能,免疫相关营养素,预测模型 ," /> 新生儿高胆红素血症,肠道微生物群,屏障功能,免疫相关营养素,预测模型 ,"/> Neonatal hyperbilirubinemia,Intestinal microflora,Barrier function,Immune-related nutrients,Prediction model ,"/> <span style="font-size:14px;line-height:2;">新生儿高胆红素血症预测模型的构建和验证</span>
Please wait a minute...
欢迎访问发育医学电子杂志,今天是
发育医学电子杂志  2026, Vol. 14 Issue (1): 51-57    DOI: 10.3969/j.issn.2095-5340.2026.01.008
  论著 |
新生儿高胆红素血症预测模型的构建和验证
张 佳  宋 宴 宏  陈 剑
唐 山 市 妇 幼 保 健 院  新 生 儿 二 科, 河 北  唐 山 063000
Construction and verification of a prediction model for neonatal hyperbilirubinemia
Zhang Jia, Song Yanhong, Chen Jian
Department of Neonatal Medicine II, Tangshan Maternal and Child Health Hospital, Hebei, Tangshan 063000, China
下载:  PDF (1101KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 
【摘要】 目的  分析新生儿高胆红素血症(neonatal hyperbilirubinemia,NHB)的影响因素,基于这些因
素构建预测模型并进行验证。 方法 回顾性纳入 2022 年 2 月至 2023 年 2 月唐山市妇幼保健院收治
的 155 例 NHB 新生儿作为 NHB 组,并纳入同期在唐山市妇幼保健院出生的 186 例健康新生儿作为非 NHB 组。采用多因素 Logistic 回归分析评价新生儿肠道微生物群、肠道屏障功能和免疫相关营养素等指标与 NHB 发生风险之间的关系,并构建列线图预测模型,采用 R 4.2.3 软件中的 C 指数(C-index)、受试者工作特征(receiver operating curve,ROC)曲线及校准曲线评价该模型对 NHB 发生风险的预测效能。统计学方法采用独立样本 t 检验、χ 2 检验。 结果  与非 NHB 组比较,NHB 组胎龄 <37 周、羊水污染新生儿占比均较高(P 值均 <0.05);肠道微生物群(双歧杆菌、乳杆菌、大肠杆菌)丰度均较大(P均 <0.001);肠道屏障功能 [ 二胺氧化酶(diamine oxidase,DAO)、D- 乳酸和细菌内毒素 ] 水平均较高(P值均 <0.001);免疫相关营养素(维生素 A、精氨酸、锌)水平均较低(P 值均 <0.001)。多因素 Logistic 回归结果显示,肠道微生物群(双歧杆菌、乳杆菌、大肠杆菌)丰度升高、肠道屏障功能(DAO、D- 乳酸和细菌内毒素)升高、免疫相关营养素(维生素 A、精氨酸、锌)降低均是新生儿发生 NHB 的独立危险因素P 值<0.05)。ROC 曲线分析结果显示,肠道微生物群(双歧杆菌、乳杆菌、大肠杆菌)、肠道屏障功能(DAO、D- 乳酸和细菌内毒素)、免疫相关营养素(维生素 A、精氨酸、锌)预测新生儿发生 NHB 的曲线下面积(area under the curve,AUC)值均 >0.600,OR>1,说明上述指标对于 NHB 发生具有较好的预测价值。基于以上影响因素建立列线图预测模型,校准曲线 C 指数为 0.953,说明该预测模型区分度较好;预测模型的 AUC 值为 0.998(95% CI:0.996-1.000),说明该预测模型具有良好的预测效能。 结论 肠道微生物群(双歧杆菌、乳杆菌、大肠杆菌)、肠道屏障功能(DAO、D- 乳酸和细菌内毒素)升高、免疫相关营养素(维生素 A、精氨酸、锌)降低均是新生儿发生 NHB 的独立危险因素。基于肠道微生物群、肠道屏障功能及免疫相关营养素等多维度危险因素构建的列线图预测模型可直观、精准地预测 NHB 的发生风险,为临床早期筛查与干预提供了参考。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
关键词:  新生儿高胆红素血症')" href="#">    
Abstract: 【Abstract】 Objective To analyze the influencing factors of neonatal hyperbilirubinemia (NHB), and 
construct and verify the prediction model based on these factors. Methods A retrospective study was 
conducted, including 155 neonates with NHB admitted to Tangshan Maternal and Child Health Hospital from  February 2022 to February 2023 as the NHB group, and 186 healthy neonates born during the same period as  the non-NHB group. Multivariate logistic regression analysis was used to evaluate the associations between neonatal intestinal microflora, intestinal barrier function, immune-related nutrients, and the risk of NHB. Multivariate logistic regression analysis was used to evaluate the associations between neonatal intestinal microflora, intestinal barrier function, immune-related nutrients, and the risk of NHB. A nomogram prediction model was constructed, and its performance was assessed using the C-index, receiver operating characteristic (ROC) curve, and calibration curve in R 4.2.3 software. Statistical analysis was performed using independent- samples t-test and χ 2 -test. Results Compared with the non-NHB group, the proportion of neonates with gestational age < 37 weeks and amniotic fluid contamination were higher (all P<0.05); the abundances of Bifidobacterium, Lactobacillus, and Escherichia coli in the intestinal microbiota were all higher (all P<0.001); the levels of diamine oxidase(DAO), D-lactic acid, and bacterial endotoxin in intestinal barrier function were all higher (all P<0.001); and the levels of vitamin A, arginine, zinc in immune-related nutrients were all lower (all P<0.001). The results of multivariate Logistic regression showed that intestinal microbiota (Bifidobacterium, Lactobacillus, Escherichia coli) elevation, intestinal barrier function (DAO, D-lactic acid, bacterial endotoxin) elevation, and immune-related nutrients (vitamin A, arginine, zinc) reduction were all independent risk factors for the occurrence of NHB (all P<0.05). ROC curve analysis demonstrated that the AUC values for predicting NHB based on these indicators were all >0.600, with odds ratios (OR) >1, indicating good predictive value. Based on the above influencing factors, a nomogram prediction model was established. The C-index value of calibration curve was 0.953, indicating that the prediction model has good discrimination; the AUC value of the prediction model was 0.998(95% CI:0.996-1.000), indicating that the prediction model has good predictive performance. Conclusion The increase in intestinal microbiota (Bifidobacterium, Lactobacillus, Escherichia coli), the enhancement of intestinal barrier function (DAO, D-lactic acid and bacterial endotoxin), and the decrease of immune-related nutrients (vitamin A, arginine, zinc) are all independent risk factors for the occurrence of NHB. The nomogram prediction model constructed based on intestinal microflora, intestinal barrier function, and immune-related nutrients can intuitively and accurately predict the risk of NHB occurrence, providing reference for early clinical screening and intervention.

Key words:  Neonatal hyperbilirubinemia')" href="#">
收稿日期:  2024-03-13                     发布日期:  2026-02-05     
基金资助: 
河北省医学科学研究重点课题计划(20240751)
通讯作者:  张佳    E-mail:  aquk874@163.com
引用本文:    
张 佳 宋 宴 宏  陈 剑. 新生儿高胆红素血症预测模型的构建和验证[J]. 发育医学电子杂志, 2026, 14(1): 51-57.
Zhang Jia, Song Yanhong, Chen Jian.
Construction and verification of a prediction model for neonatal hyperbilirubinemia
. Journal of Developmental Medicine(Electronic Version), 2026, 14(1): 51-57.
链接本文:  
http://www.fyyxzz.com/CN/10.3969/j.issn.2095-5340.2026.01.008  或          http://www.fyyxzz.com/CN/Y2026/V14/I1/51
[1] 李中原 胡晓红. 儿童抽动障碍与肠道微生物群的关系研究进展[J]. 发育医学电子杂志, 2025, 13(1): 73-80.
[2] 陈慧群 周琳 常晓慧 关怀. 生命早期肠道微生物群定植的影响因素[J]. 发育医学电子杂志, 2023, 11(6): 461-465.
No Suggested Reading articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed